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Abstract
We consider an extended Korteweg–de Vries (eKdV) equation, the usual
Korteweg–de Vries equation with inclusion of an additional cubic nonlinearity.
We investigate the statistical behavior of flat-top solitary waves described by
an eKdV equation in the presence of weak dissipative disorder in the linear
growth/damping term. With the weak disorder in the system, the amplitude
of solitary wave randomly fluctuates during evolution. We demonstrate
numerically that the probability density function of a solitary wave parameter
κ which characterizes the soliton amplitude exhibits loglognormal divergence
near the maximum possible κ value.

PACS numbers: 05.40−a, 05.45.Yv, 47.54.−r

1. Introduction

It is well known that the Korteweg–de Vries (KdV) equation governs the propagation of shallow
water waves of moderately small amplitude, where a balance between quadratic nonlinearity
and linear dispersion results in soliton solutions. For the waves of large amplitudes or under
certain circumstances in stratified fluids, however, it was found that an additional cubic
nonlinearity becomes crucial, leading to the extended KdV (eKdV) equation [1–3]. The
eKdV equation, also known as the Gardner equation, appears as a governing equation for long
interfacial waves in a two-layer system [3–5] as well as for oceanic stratification in shear flow
[6–9]. A more general form of the eKdV equation can be obtained by a special reduction from
a coupled AKNS–Kaup–Newell hierarchy of systems [10].

Both the KdV and eKdV equations are exactly integrable. Many integrable properties
of eKdV equations can be generated similarly to the KdV type of equations [11]. The
integrability induces that the eKdV equation possesses conventional soliton solutions of
small amplitudes similar to those of the KdV equation. In addition, this extended equation
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exhibits a remarkable feature that distinguishes itself from the KdV equation, namely, the
emergence of large amplitude wide solitons, called flat-top solitons. Such wide solitons also
appear as solutions for other related nonlinear evolution equations led by a balance between
dispersion and nonlinearity, such as high-order nonlinear Schrödinger equations (NLS) or
cubic-quintic complex Ginzburg–Landau equation. It is also noted that observations of large
amplitude internal waves in the ocean can be explained in terms of flat-top waves [12–15].
Consequently, flat-top solitary waves draw much attention in various areas of physics including
fluid mechanics [1, 12–15], nonlinear optics [16–18] and plasma physics [19, 20].

Recently, we have investigated the effects of weak dissipative disorder on flat-top solitary
waves in the cubic-quintic nonlinear Schrödinger equation (CQNLSE) and the derivative
CQNLSE (DCQNLSE) [21, 22]. In particular, two most common types of disorders, disorders
in the linear and cubic nonlinear gain/loss coefficients, are considered, which lead to the
random variation of the solitary wave parameters including amplitude and group velocity.
In this study, we showed numerically and analytically that the probability density function
(PDF) of the soliton amplitude exhibits loglognormal divergence near the maximum possible
amplitude value. This phenomenon stems from the fact that the solitary wave obtains a
typical table-top shape when its amplitude approaches the maximum possible value. Thus,
our anticipation was that the loglognormal divergence of amplitude can be generally associated
with emergence of flat-top solitary waves. In this paper, we corroborate this generality by
showing that a perturbed eKdV equation whose structure differs from the CQNLSE and
DCQNLSE demonstrates similar statistical behavior, namely, loglognormal divergence.

The eKdV equation is not of the NLS type which was considered in our previous studies.
On the other hand, it is ubiquitous and belongs to one of the families of integrable nonlinear
partial differential equations. Therefore, it is important to examine if the loglognormal
divergence of solitary wave parameters can also be found in a perturbed eKdV equation in the
presence of weak disorder. In particular, we focus on the case when the dissipative disorder
appears in the linear growth/damping term and its intensity is weak so that the solitary waves
can evolve without severe distortion. This type of disorder can emerge quite commonly in
systems that involve nonlinear wave equations. Indeed, for the case of water waves, as the
depth of channel gradually increases or decreases, the evolution of waves can be described by a
perturbed KdV equation, where a linear term proportional to the wave envelope is incorporated
[23–26]. In the context of nonlinear optics, the random variations in the gain of amplifiers
which are positioned to compensate for the loss can lead to disorder in the linear gain coefficient
[27]. Such disorder also appears in massive multichannel transmission systems due to the
interplay of Raman cross talk and bit pattern randomness [28, 29].

Considering a perturbed eKdV equation where a random disorder appears in the linear
growth/damping term, the amplitude of the solitary wave undergoes random fluctuations
during evolution. Thus, we conduct Monte Carlo simulation to achieve the PDF of a parameter
characterizing the soliton amplitude and verify its loglognormal divergence. This finding in
turn concludes that the loglognormal divergence of the amplitude PDF found in [21, 22] is not
restricted to the solitary waves of NLS-type equations. We also note that theoretical analysis of
the perturbed KdV-type equations is an extremely challenging task due to the substantial effects
of radiation. More specifically, the linear perturbation induces a shelf consisting of radiative
modes directly behind the solitary wave. While the shelf has a slowly varying small amplitude,
its range extends with time, which varies at the rate of order 1 [3, 23, 30]. This phenomenon
brings most of difficulties associated with the theoretical analysis of perturbed KdV-type
equations, and many questions still remain open despite various theoretical methods available
[23, 26, 31, 32]. Although we expect that the adiabatic perturbation technique employed for
the models in our previous study [22] can be an appropriate tool to deal with the underlying
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problem, it calls for more extensive perturbative calculations in order to incorporate the full
impact of shelf. We therefore defer the complete theoretical analysis to a future publication.

The material in this paper is organized as follows. In section 2, we briefly describe the
evolution of solitary waves of an eKdV equation in the presence of disorder in the linear
growth/damping. In section 3, we present the results of direct numerical simulations. Finally,
in section 4, we summarize our main results.

2. Extended Korteweg–de Vries equation with disorder in the linear growth/damping
coefficient

We consider the evolution of solitary waves described by an eKdV equation with disorder in
the linear growth/damping coefficient,

∂tu + 6u(1 − εnu)∂zu + ∂3
z u = εξ(t)u. (1)

In the context of internal waves, u represents the amplitude of the wave (or the interfacial
displacement), z is the horizontal coordinate and t is time. The right-hand side term εξ(t)u is
responsible for the disorder effects of the linear growth/damping, and εn is the cubic nonlinear
coefficient. We assume that the disorder ξ(t) is zero in average and short correlated in time,
i.e.,

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t ′)〉 = Dδ(t − t ′), (2)

where D is the disorder intensity.
When ε = 0, we obtain an unperturbed eKdV equation whose soliton solutions are given

by

us(z, t) = 4κ2

(
1 − κ2

/
κ2

m

)1/2
cosh(2x) + 1

, (3)

where x = κ(z−4κ2t), κm = 0.5/
√

εn. Using the solution form (3), we find that the parameter
κ characterizes the soliton amplitude and group velocity with the relation,

κ =
√

η/2 − η2/
(
16κ2

m

)
, (4)

where η represents the soliton amplitude. These solitons are limited in amplitude and speed,
namely, as κ becomes close to its maximum possible value κm, the soliton forms the flat-top
shape and the limiting flat-top soliton corresponds to the maximum amplitude and speed.
Figure 1 illustrates the solitary wave solutions (3), for different κ values that range from 0.5
to 0.624 999 99, where we take εn = 0.64 corresponding to κm = 0.625.

In the presence of perturbation, i.e., with nonzero ε, a shelf is generated in the lee of
the solitary wave and extends its range with time. Note that this interesting feature imposes
major difficulties on theoretical analysis of (1). Here, we illustrate the emergence of shelf by
numerically integrating (1) for a given disorder realization with D = 3 and ε = 0.09. For
the initial condition in the form of (3) with κ = 0.5 and εn = 0.64, figure 2 demonstrates the
solution u(z, t) at t = 10 which consists of a solitary wave and a shelf.

3. Numerical simulation

We conduct Monte Carlo simulations for (1) with about 100 000 disorder realizations. Our
initial condition is in the form of the solitary wave solution us(z, 0) with κ = 0.5 and εn = 0.64
which corresponds to κm = 0.625. We also assume that the disorder intensity is weak, in
particular, D = 3 and ε = 0.09. The numerical simulation is carried out until the solitary
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Figure 1. Solitary wave solutions us(z, t) at t = 0 for different κ values. From the lowest to the
highest amplitude solutions, each solution corresponds to κ = 0.5, 0.624, 0.624 999, 0.624 999 99.

−40 −30 −20 −10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

z

|u
(z

,1
0)

|

Figure 2. The solution u(z, t) at t = 10 for a given disorder realization ξ(t) with D = 3 and
ε = 0.09. The initial condition u(z, 0) is in the form of (3) with κ = 0.5 and εn = 0.64.

wave reaches a time tf = 10, where the disorder strength becomes Dε2tf = 0.243. We
integrate (1) by employing a fourth-order split-step method which combines the fast Fourier
transform and a fourth-order Runge–Kutta scheme for the linear and the nonlinear parts of
the equation, respectively [33]. We also introduce artificial damping near the boundaries of
the computational domain in order to avoid numerical artifacts resulting from the radiation
emission and the use of periodic boundary conditions [34]. The size of the computational
domain is taken large enough, −100 � z � 100, so that the damping layer does not affect the
major portion of solitary wave dynamics. The discretized time and spatial steps are taken as
δt = 0.001 and δz = 0.024, respectively.

After retrieving the shape of solitary wave at the end of the evolution, we calculate the
value of κ based on (4). Repeating this procedure for independent realizations of disorder,
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Figure 3. The probability density function of κ at t = 10.

we achieve the PDF of κ shown in figure 3. The result of numerical simulation clearly
demonstrates that the PDF attains a divergence near κm.

We now explain how to verify the divergence observed in figure 3 is indeed loglognormal.
First, it should be mentioned that a preliminary study has obtained an analytic form of κ-PDF at
the first-order adiabatic perturbation (see, e.g. [22] for the details of the adiabatic perturbation
technique). Due to the emergence of shelf and its nature, however, a higher order perturbation
theory is necessary for a more exact description of the PDF. Nevertheless, the result of the
first-order perturbation calculation suggests that the analytic form of κ-PDF denoted by F(κ)

approximately follows (see, e.g. (7) in [22]),

F(κ) � λ3
exp{−λ2 ln2[λ1arctanh(κ/κm)]}
κm

(
1 − κ2

/
κ2

m

)
arctanh(κ/κm)

, (5)

for 0 � κ < κm and F(κ) = 0 elsewhere. Here, λ1, λ2, λ3 are some constants related
to the parameters D, ε, and the total evolution time tf. This expression indicates that the
loglognormal divergence can be observed in the vicinity of κm. Specifically, (5) yields an
asymptotic expression of F(κ) near κm,

F(κ)|κ�κm
� λ3

exp
{ − λ2 ln2

[− 1
2λ1 ln[δκ/(2κm)]

]}
δκ|ln[δκ/(2κm)]| , (6)

where δκ = κm − κ and 0 � δκ/κm � 1. We find that our numerically obtained PDF best fits
this asymptotic expression with the constants λ1 = 1.7696, λ2 = 0.8342, λ3 = 1.0983. For
a more clear demonstration of the asymptotic behavior of the numerically obtained PDF, we
employ a method which allows us to map the small neighborhood of κm into a wider range.
Following the procedure applied to analyze the PDFs for CQNLSE and DCQNLSE [22], we
rewrite (6) as

− ln

[
1

λ3
δκ| ln[δκ/(2κm)]|F(κ)

]
� λ2 ln2

[
−1

2
λ1 ln[δκ/(2κm)]

]
. (7)

We now define G(δκ) and g(δκ) as

G(δκ) = − ln

[
1

λ3
δκ| ln[δκ/(2κm)]|F(κ)

]
(8)
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Figure 4. G(δκ) versus g(δκ) for the same parameters used in figure 3. The solid line is a linear
fit with slope 1.04. The circles represent the numerical result.

and

g(δκ) = λ2 ln2
[− 1

2λ1 ln[δκ/(2κm)]
]
. (9)

Note that if the numerically obtained PDF can be described by the rhs of (6), the graph of
G versus g is a straight line with a slope close to 1. By plugging the numerically obtained
PDF data into F(κ) in (8), we calculate G(δκ) and present the graph of G(δκ) versus g(δκ)

in figure 4. The graph demonstrates that our numerically obtained data lie on a straight line
with a slope 1.04. This result concludes that the numerically obtained PDF of κ exhibits a
loglognormal divergence in the vicinity of κm.

4. Conclusion

We investigated numerically the evolution of flat-top solitary waves by the extended Korteweg–
de Vries equation. Taking into account the disorder in linear growth/damping coefficient, one
of the most common disorder forms in the nonlinear wave system, we showed that the PDF
of κ which characterizes the solitary wave amplitude exhibits loglognormal divergence near
the maximum value of κ . We expect that this loglognormal divergence in the vicinity of the
maximum possible value of κ is mainly related to the fact that the solitary wave forms the table-
top shape as the amplitude of wave approaches its maximum super-exponentially fast. The
eKdV equation fundamentally differs from NLS type of equations considered earlier; however,
it shows similar statistical behavior for flat-top solitary waves. This phenomenon suggests that
the loglognormal divergence can be a general consequence associated with flat-top solitary
waves in the presence of weak dissipative disorder.
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